<<
>>

Физиологические особенности детского возраста

Решающей предпосылкой для успешной инфузионной терапии в детском возрасте является осведомленность в изменениях важнейших биохимических данных в зависимости от возраста.

Содержание и распределение воды

Общее содержание жидкости в течение внутриутробного периода постепенно уменьшается (табл.

30). Подобная тенденция остается и после рождения, причем наиболее быстрое изменение происходит между периодом новорожденности и грудным возрастом (табл. 31).
Таблица 30. Процентное содержание жидкости у плода по отношению к
Лунные

месяцы

1 2 3 4 5 6 7 8 9 10
Вода в % к массе тела 93,8 92,7 91,0 89,2 87,5 85,8 83,9 81,9 75,5


В табл. 31 представлено закономерное уменьшение вне- и внутриклеточного пространства. Однако приведенные цифры представляют собой средние величины. При проведении лечебных мероприятий необходимо предусматривать значительные индивидуальные колебания, прежде всего у новорожденных и грудных детей. У недоношенных детей и рожденных в срок содержание общей жидкости колеблется от 70—83%, у детей от 6 мес до 11 лет — от 53% до 63% независимо от пола (Friis-Hansen с соавт.). Количество внеклеточной жидкости у многих новорожденных с низкой массой тела можно увеличить, в то время как у других, низкая масса тела которых обусловлена пониженной плацентарной активностью, часто выявляется резкое уменьшение внеклеточной жидкости (с гемоконцентрацией и гиперэлектролитемией, Jonxis).

Таблица 31. Процентное содержание общей, вне- и внутриклеточной жидкости по отношению к массе тела в процессе внеутробной жизни
Возраст ОКЖ Внеклеточное

пространство

Внутриклеточное

пространство

0 — 1 день 79,0 43,9 34,7
1 — 10 дней 74,0 39,7 31,8
1 — 3 мес 72,3 32,2 43,3
3—6 » 70,1 30,1 42,1
6—12 » 60,4 27,4 35,2
2 года 58,7 25,6 33,8
2—3 > 63,5 26,7 38,5
3 — 5 лет 62,2 21,4 45,7
5—10 » 61,5 22,0 43,2
10—16» 58,0 18,7 46,7

ОКЖ — общее количество жидкости (по Friis-Hansen).


Особенно должны учитываться изменения в периоде новорожденности (1 — 10-й день жизни). Однако было бы глубоким заблуждением делать заключение о наличии значительных резервов воды у детей младшего возраста на основании более высокого в процентном отношении содержания воды в их организме. Как раз наоборот!

В функциональном отношении организм младенца беден водой.

Значительно большая поверхность, приходящаяся на единицу массы тела, обусловливает соответственно больший основной обмен (вдвое выше на 1 кг массы тела, чем у взрослых), а также повышенное выведение мочи. Необратимые потери воды достигают у младенца Vs величины взрослого, который в 10 раз тяжелее. Обмен жидкости у детей происходит в 3—14 раз быстрее (Gamble, рис. 110).

У младенцев минимальная суточная потеря жидкости достигает 300 мл (Gamble). Для полного удаления жидкости из внеклеточного пространства теоретически новорожденному потребовалось бы 7 дней, а взрослому— 10 дней. Таким образом, шансы выживания у грудного ребенка меньше. В табл. 32 вновь представлены данные о содержании жидкости для различных возрастных групп (модифицировано по Bachmann, 1965). На долю внутрисосудистой части внеклеточного пространства приходится во всех возрастных группах довольно постоянная процентная: величина: 4,5—5% массы тела (Gamble, MacLaurin, Randall).

image116Рис. 110. Сравнение потребления, обмена и выведения воды у взрослых и грудных детей (модификация по Gamble).

Водный статус хорошо отражает отношение количества общей жидкости тела к его поверхности. Для детей, имеющих до 20 л воды или 1 м2 поверхности тела, в постнатальном периоде существует линейная зависимость между поверхностью тела и общей массой жидкости (Friis- Hansen с соавт) по следующему уравнению:

Таблица 32. Поверхность тела (м2), масса тела (кг), а также количество общей жидкости тела на м2 и кг массы тела в зависимости от возраста
Определяемая величина Взрослые Доношенные дети Недоношенные дети
Масса тела, кг 70 3,5 1 5
Поверхность тела, м2 Поверхность тела/кг 1,73 0,21 0,11
Масса тела, см2 240 600 730
Общая жидкость, л Общая жидкость/кг 43 2,6 1,2
Масса тела, мл 620 750 825
Поверхность тела, л 24,9 12,4 10,9


image117

Рис. 111. Жидкость тела в зависимости от массы и поверхности тела, а также возраста.

ОЖТ — объем всей жидкости тела; ЭЦП — объем жидкости экстрацеллюлярного пространства; ИЦП — объем жидкости интрацеллюлярного пространства (по Bruck et al., 1960).

Вода тела, л = [поверхность тела, м -15,05] — 0,71 М±7,/%.

Интересно, что в постнатальном периоде внеклеточное пространство по отношению к поверхности тела остается неизменным, а величина внутриклеточного пространства повышается (рис. 111; по Bruck et al., 1960).

Изменения, которые происходят в периоде новорожденности (1—10-й день жизни), следует рассматривать особо.

Непосредственно после рождения в течение 8 ч жизни (максимум спустя 3 ч) новорожденный (родившийся в срок или преждевременно, теряет в среднем 25% объема плазмы в форме разжиженной плазмы из внутрисосудистого пространства (Clark, Gairdner, Gairdner с соавт.). Вероятно, происходят изменения в бассейне легочной циркуляции. Это ведет к повышению гемоглобина, гематокрита и белков плазмы, т. е. к гемоконцентрации с одновременным сокращением объема циркулирующей крови. Величина индивидуальных колебаний зависит от объема плацентарных трансфузий (Usher с соавт.). За этим плазмотоком (Gairdner с соавт.) следует перемещение жидкости из внутриклеточного к внеклеточному пространству (MacLaurin, Usher с соавт.), благодаря чему объем крови при повышении объема плазмы вновь увеличивается в интервале между 4 и 24 ч жизни. Такой процесс наблюдается вплоть до третьего дня жизни, ведет к временной внутриклеточной дегидратации (MacLaurin) и является выражением нестабильности водного баланса, особенно во внутриклеточном пространстве. Экспансией внеклеточного пространства можно объяснить образоваие отеков у новорожденных. Особенно подвержены этому недоношенные дети.

Содержание и распределение электролитов

Как нормальные показатели электролитов в организме в целом, так и их распределение в плазме, свойственные взрослому организму, нельзя без ограничений переносить на детский возраст, в частности на период новорожденности и младенчества.

В пересчете на массу тела новорожденные содержат почти на 50% больше натрия и на 20% меньше калия, чем взрослые (Wilkinson). Соответственно коэффициент Na : К у новорожденных выше, чем у взрослых (1,5 против 0,6). Этот факт объясняется главным образом различной величиной вне-и внутриклеточного пространства. Отмечаются также колебания содержания и других ионов. Недоношенные дети обладают особенно большим количеством натрия и хлоридов из-за относительно большего внеклеточного пространства (Widdowson, Widdowson, Spray). Также «нормальные значения» электролитов плазмы, свойственные взрослым, нельзя переносить на детей раннего грудного возраста до первого месяца жизни (Acharya, Payne) [Thalme, 1962; Thalme, 1964] (Widdowson, McCance, Ju с соавт.).

Натрий: концентрация натрия в крови из вены пупочного канатика достигает 147 мэкв/л плазмы, а в течение первых 12 ч падает до значений нормы у взрослых и повышается в течение следующих дней жизни снова до уровня 148 мэкв/л; лишь после периода новорожденности она достигает нормальных пределов. Падение в первые часы жизни объясняется, вероятно, перемещением воды из внутриклеточного во внеклеточное пространство.

Более позднее повышение концентрации натрия является выражением физиологической гиперосмолярности в течение периода новорожденности [Gautier, 1964] и объясняется преимущественно недостаточной концентрационной способностью развивающихся почек (см. 3.12.1.4). Эта гиперосмолярность обычно не имеет болезненной симптоматики, но играет определенную роль при гипертермических реакциях (например, при недостаточном введении жидкости) в период новорожденности.

Калий: примечательна высокая концентрация калия в плазме новорожденных, которая в среднем достигает 8 мэкв/л (Widdowson, McCance, Acharya, Payne) в крови из вены пупочного канатика. Она постепенно понижается, но к 10-му дню жизни составляет 5,7 мэкв/л [Thalme, 1964] — все еще выше, чем у взрослых. Важно знать о широких пределах нормальных колебаний калия (4,8—12,9 мэкв/л, Widdowson, McCance; 5—6—12,0 мэкв/л, Acharya, Payne). Концентрации калия, которые у взрослых рассматриваются как показания к диализу, у новорожденных расцениваются как нормальные.

Хлорид (Acharya, Payne) [Thalme, 1962] (Widdowson, McCance, Yu с соавт.). Концентрация хлоридов плазмы колеблется незначительно, изменяясь главным образом параллельно концентрации натрия, и достигает в течение физиологической гиперосмолярности новорожденных 110 мэкв/л.

Кальций (Acharya, Payne, Yu с соавт.): в крови из вены пупочного канатика недоношенных и доношенных детей концентрация кальция повышена (у новорожденных—5,3 мэкв/л плазмы, у доношенных — 4,6—5,0 мэкв/л). В течение первых 36 ч жизни его концентрация понижается до более низких величин (3,9 мэкв/л, Acharia, Payne; 3,4 мэкв/л, Yu с соавт.), а затем постепенно повышается к 3—4-му дню жизни до величины показателей взрослых. Здесь также имеет место значительный размах колебаний: у недоношенных новорожденных они составляют 3,2—3,5 мэкв/л без выраженной симптоматики (Yu с соавт.).

Фосфат (Acharia, Payne, Thalme, 1962): концентрация в плазме неорганического фосфата у новорожденных, младенцев и растущих детей значительно превышает уровень фосфата у взрослых, причем могут отмечаться значительные индивидуальные колебания.

Магний (Yu с соавт.): у недоношенных новорожденных наблюдается такая же закономерность, как и в отношении концентрации кальция: высокое содержание в крови пупочного канатика, минимальные значения спустя 12— 18 ч (1,3— 1,6 мэкв/л), спустя 48 ч 1,6—1,8 мэкв/л, причем при легкой недоношенности значения ниже, чем при тяжелой.

Кислотно-щелочное состояние

Кислотно-щелочная регуляция в процессе родов и первых часов жизни подвергается большой нагрузке (гипоксия в течение родов с накоплением молочной кислоты, гиперкапния). Однако бывает достаточной взаимосвязь с обменом веществ матери, чтобы ребенок родился почти с нормальным кислотно-щелочным статусом (Kunzel с соавт.), но с высоким коэффициентом молочной (пировиноградной) кислоты (Marx, Greene, Marx с соавт.), как выражением гипоксии в процессе родов. В последующие минуты и часы может развиться смешанный дыхательный и метаболический ацидоз. Переход от фетального к обычному кровообращению осуществляется через так называемую неонатальную форму, которая может продолжаться от нескольких часов до нескольких дней. Послеродовое созревание легких идет параллельно и может нарушаться гипоксемией, гиперкапнией и шоком (Avery, Dawes, Saling). Возникающее вследствие этого повышение шунтирования справа налево и имеющиеся к этому времени ателектазы легких значительно влияют на газообмен в легких и усиливают описанные нарушения по принципу порочного круга. Особое прогностическое значение имеет тенденция к изменению значений рН крови (Usher) в первые 6—12 ч жизни.

Прогноз считается хорошим тогда, когда понизившийся вначале показатель рН вновь повышается, например, от 7,00 до 7,30, плохой прогноз для жизни и здоровья бывает тогда, когда начальные значения совсем не меняются или резко падают. Почти до 6-го дня жизни выявляется легкий метаболический ацидоз (табл. 33), который по существу указывает на недостаточную способность созревающих почек к регуляции кислотно­щелочного состояния (обзор Bland, Kildeberg, Мс-Сапсе, 1950, 1964; МсCance, Finck); пониженное выведение хлоридов с гиперхлоридемией, пониженное образование гидрокарбоната, гипофосфатурию при гиперфосфатемии. Одновременно наблюдается пониженная способность к ощелачиванию и ограниченное образование NH4 при нагрузке в течение пер­вых 3 мес жизни.

Таблица 33. Нормальные показатели кислотно-щелочного состояния в первые дни жизни (собственное исследование) __________________________________________ bgcolor=white>7,34
Возраст

(дни)

Число Действительные значения рН pCO2, мм рт. от. Дефицит ос­нований, мэкв/л Стандарт­ный бикар­бонат, МЭКВ/Л
1 30 7,33 37,2 —5,7 19,3
2 30 37,5 —4,8 20,1
3 30 7,36 37,8 —3,6 21,0
4 30 7,37 38,4 —2,7 21,7
5 30 7,37 38,4 —2,4 21,9
6 30 7,38 39,3 — 1,5 22,9
7-10 30 7,38 39,2 — 1,7 22,5


Даже в более младенческом возрасте описывается значительная лабильность кислотно-щелочного состояния, особенно при нагрузках, причем решающее значение могут иметь экст-раренальные факторы.

Напряженный и лабильный водный баланс облегчает возникновение шока различного генеза и одновременно преренальной почечной недостаточности. Развивающаяся в норме анемия с максимумом в конце 3-го месяца жизни (trime-noanemia) уменьшает буферную емкость крови, тем более что в этот период наблюдаются наивысший основной обмен (между 6­м и 18-м месяцем жизни) и значительная потребность в кислороде, что способствует нарушению обмена веществ.

Функция почек

Почки как важнейший орган поддержания гомеостаза у новорожденных и детей раннего возраста в функциональном отношении значительно отличаются от почек детей старших возрастных групп. Почку новорожденных можно рассматривать как созревающий орган, причем следует подчеркнуть, что понятие «незрелый» не тождественно понятию «малозначащий». Молодая почка способна удовлетворять нормальные запросы организма в этом возрасте. При функциональной незрелости почка имеет меньше резервных возможностей и в патологических условиях быстрее декомпенсируется. Здесь выявляются соотношения, свойственные и другим функциональным органам и системам. Вероятно, у новорожденных одновременно наблюдается связанная с возрастом недостаточная регуляция объема через систему альдостерон — адиуретин [МсСапсе, 1964].

Важнейшими особенностями в период новорожденности и раннем грудном возрасте являются следующие [см. обзор МсСапсе, 1950] [^Cance, 1964] (Wilkinson, Winters).

— Пониженная способность к выведению жидкости при водной нагрузке: хотя почки новорожденных могут качественно так же разводить мочу, как и почки взрослых, введенная вода, однако, выводится значительно медленнее [МсСапсе et al., 1954], что облегчает перенасыщение водой при чрезмерных инфузиях.

— Понижение концентрационной способности: у новорожденных она в 3 раза меньше, чем у взрослых [МсСапсе, Widdowson, 1954]. Моча концентрируется максимально до 500 мосммол/л, а у взрослых до 1400 мосммол/л [Gautier, 1964]. При этом концентрационная способность экспотенциально повышается прежде всего в первый год жизни (в конце первого месяца почти до уровня 900 мосммоль/л, в конце первого года жизни почти до 1100 мосммоль/л; Polacek с соавт.). Низкая концентрационная способность касается главным образом немочевых субстанций. Если новорожденный получает пищу, богатую белком, то почки способны кон­центрировать мочу вообще до 1200 мосммоль/л. В норме у младенца отсутствует катаболизм аминокислот, однако они используются для построения белков тела (Barnett). Новорожденные выделяют непосредственно после рождения образованную пренатально слегка кислую гипотоничную мочу осмолярности приблизительно 50 мосммоль/л ^^ance, 1950], концентрация которой с первого по второй день повышается до 400— 500 мосммоль/л, причем с первого по третий день выделяется приблизительно 20—30 мл мочи. С увеличением количества пищи повышается суточный диурез (с 7-го дня до 150 мл; с 10-го дня до 200 мл), причем осмотическое давление мочи на 7—10-й день падает приблизительно до 100 мосммоль/л. Концентрация натрия и калия в моче (антенатально приблизительно 50—60 мэкв/л) уменьшается до 5— 10 мэкв/л с 4—6-го дня, что обеспечивает образование запаса электролитов на период их недостаточного введения (Wilkinson). Если ребенок подвергается операции, то ограничение выведения натрия и калия может удлиняться. Организм ново­рожденного не в состоянии быстро вывести натрий и хлор при их внезапном чрезмерном введении [Colle, Poulsen, 1959], но при дальнейшей нагрузке теряется способность к задержке натрия при большом объеме мочи. Равным образом почки новорожденного при значительном введении калия могут выделять его с мочой до 50—60 мэкв/л, несмотря на тенденцию к задержке калия в нормальных условиях (Wilkinson).

— Гломерулярная фильтрация по сравнению с почками взрослых значительно понижена (McCance, Young) и, несмотря на быстрое повышение ее к концу первого года жизни, она не достигает значений взрослых [McCance, 1950]. Это важно для выведения многих лекарственных веществ (например, пенициллина) (Barnett).

— Функция канальцев (клиренс диодона и бета-аминогиппуровой кислоты) по сравнению со взрослыми ограничена (Alexander, Nixon).

— Регуляция кислотно-щелочного баланса осуществляется так же, как и зрелой почкой (более подробно см. 3:12.1.3).

Резюме: Функциональная способность почек в ее различных вариантах формируется с разной скоростью. При этом функция канальцев остается пониженной дольше, чем функция клубочков, вследствие чего младенцы и маленькие дети с большей трудностью компенсируют потери воды и нарушения кислотно-щелочного баланса.

Гипогликемия

К моменту рождения уровень сахара крови у новорожденных достигает приблизительно 70—80% материнского (Com-blath, Schwartz). В течение последующих 4 ч эта величина быстро падает, потому что организм ребенка вначале утилизирует углеводы, а позднее жиры до тех пор, пока он не сможет покрыть энергетические запросы приемом пищи естественным путем (Cornblath, Schwartz, Melichar, Persson, Genzi, Cornblath, Reisner, Beard et al.). У 2—3% детей сахар крови снижается до таких значений, при которых могут наблюдаться тяжелые последствия, которые обозначаются, по Cornblath, транзиторной симптоматической неонатальной гипогликемией.

Критическим пределом уровня сахара крови считается:

— у детей с массой менее 2500 г 20 мг/дл

— у доношенных детей до 72 ч жизни 30 мг/дл

— у доношенных детей старше 72 ч 40 мг/дл

— у детей старше 1 года 50 мг/дл

— у новорожденных, родившихся от матерей, больных сахарным диабетом 30 мг/дл

В норме доношенные дети имеют большие резервы гликогена (Shelley, Schelley, Neligan), которые могут покрыть почти 20-часовую потребность (Melichar). Сниженные резервы имеют недоношенные и гипотрофичные новорожденные (например, близнецы) (у них особенно легко развивается гипогликемия), а также дети, матери которых страдали сахарным диабетом и токсемией, и дети с синдромом недостаточности дыхания. Основными симптомами являются: тремор, конвульсии, нерегулярное дыхание вплоть до апноэ, апатия, гипотония мышц, цианоз. В первую очередь возникает угроза для центральной нервной системы, в ней нет собственных резервов гликогена. В значительном проценте случаев наблюдаются необратимые мозговые нарушения или наступает смерть (Chance, Bower, Cornblath, Schwartz). Особенно часто мы наблюдали гипогликемию у новорожденных в послеоперационном периоде (Schippan, Wild).

Причинами этого синдрома является не повышенное потребление глюкозы на периферии, как предполагалось раньше, а недостаточное освобождение ее из гликогена при пониженной периферической потребности или недостаточный глюконеогенез вследствие неполноценности системы регуляции (глюкагон, кора надпочечников; Gladtke с соавт.; из работ Hattinberg с соавт.).

Терапия заключается в доставке глюкозы или возбуждения глюконеогенеза.

Схема по Comblath, Schwartz следующая:

Срочное введение инфузионного раствора глюкозы 500 из расчета 1—2 мл/кг массы с последующим переходом на медленное введение инфузионного раствора глюкозы 150 в дозировке 75—100 мл/кг массы тела в день в первые 1—2 дня жизни. После этого вводится 100—ПО мл/кг массы в день инфузионного раствора глюкозы 100 с 40 мэкв/л хлорида натрия. Как можно скорее следует переходить на питание естественным путем. Введение глюкозы нельзя обрывать внезапно, так как возможна чрезмерная гипогликемия. При недостаточном повышении уровня сахара крови (предельная концентрация 30 мг/дл после 6—12 ч внутривенного введения) назначается гидрокортизон 5 мг/кг массы в день внутрь или АКТГ 4 ЕД/кг массы в день внутримышечно в два приема.

Chance рекомендует при подобном введении глюкозы добавлять гидрокортизон 10 мг/кг массы в день или преднизолон 2 мг/кг массы в день. Нам, как правило, удавалось устранить гипогликемию внутривенным введением глюкозы в размере суточной потребности в виде инфузионного раствора глюкозы 200 (но не через пупочную вену из-за опасности развития тромбозов). Только изредка приходилось дополнительно прибегать к введению инфузионного раствора 400. Гипогликемия может развиться также у младенцев более старшего возраста и у детей с тяжелой дистрофией (гипертрофический стеноз привратника, длительное недостаточное парентеральное питание). Неврологические признаки при этом наблюдаются редко или бывают нечеткими; на первом плане стоят нарушения дыхания.

Лечение осуществляется массивным введением высококон­центрированных растворов глюкозы.

При гипогликемических состояниях, прежде всего в младенческом возрасте, нужно также думать о нарушениях всасывания и усвоения глюкозы, которые лучше всего лечить под наблюдением специалистов.

Особенности энергетического и белкового обмена веществ

Потребность в энергии у детей значительно выше, чем у взрослых, так как, помимо потребности для поддержания жизнедеятельности, существует потребность в энергии для процессов роста.

У 6—12-летнего ребенка общий обмен веществ (по Mitchell—Neelson) включает в себя:

— 50% основной обмен;

— 3% специфически динамическое действие;

— 12% рост;

— 25% физическая активность;

— 10% потеря со стулом.

При расчетах наряду с поверхностью тела [основной обмен приблизительно 1000 ккал (4190 кДж)/м в день, общий объем приблизительно 1500 ккал (6880 кДж)/м день] учитываются также масса тела и возраст (табл. 34). Данньк разнородны. Для оценки ситуации у каждого больного ребенка служат данные Mitchell — Nelson, имеющие значительные колебания. В данных ВОЗ принимается за основу белок, который почти на 50% состоит из эссенциальных аминокислот (например, женское молоко, куриные яйца).

Таблица 34. Ориентировочные цифры суточной потребности в калориях и белках


Рис. 112. Распределение суточной потребности в калориях в зависимости от возраста (по Mitchell-Nelson) (1 ккал=4,1868 кДж).

Потребность в белках значительно повышается после операций и травм, особенно ожогов, а также при потере кишечного секрета, синдроме малабсорбции при воспалениях желудочно-кишечного тракта или после распространенных резекций, при паразитарных, бактериальных и вирусных инфекциях, опухолевых заболеваниях и в период выздоровления после острой почечной недостаточности или острого заболевания печени.

У младенцев потребность в аминокислотах иная, чем у взрослых (табл. 35). Особенно нужно помнить, что гистидин у младенцев и маленьких детей [Holt, Snyderman, 1961] и цистеинцистин у недоношенных (Sturman et al.) являются эссенциальными аминокислотами.

Таблица 35. Минимальная суточная потребность младенцев и маленьких детей в эссенциальных аминокислотах [Holt, Snyderman, 1961]
Аминокислоты Минимальная потребность, мг/кг массы
Гистидин 34
Изолейцин 119
Лейцин 150
Лизин 103
Метионин (при наличии цистина) 45
Фенилаланин (при наличии тирозина) 90
Треонин 87
Триптофан 22
Валин 105


Соотношения основного обмена, специфически-динамического действия, роста активности и потери со стулом в общем обмене веществ на различных возрастных ступенях иллюстрирует рис. 112. Потребность в калориях доношенных и недоношенных новорожденных низкая. По данным Widdowson, для доношенных новорожденных она составляет 45 ккал (188 кДж)/кг массы тела в день (основной обмен) или 82 ккал (343 кДж)/кг массы тела за 24 ч (общий обмен веществ), для недоношенных — 38 ккал (159 кДж)/кг массы тела за 24 ч (основной обмен) или 65 ккал (272 кДж)/кг массы тела за 24 ч (общий обмен, цит. по Widdowson). При этом для недоношенных допускаются и рекомендуются значительно большие количества калорий [по Young et al., 1947, 1950: 120 ккал (502 кДж) и 6 г белка/кг массы тела за 24 ч по Harvie: 110—150 ккал (461—628 кДж)/кг массы тела за 24 ч]. Очень важна для детей этого возраста оптимальная температура окружающей среды. Нейтральной температурой называется та, при которой не требуется дополнительного напряжения обмена веществ для поддержания постоянной температуры тела. Колебания этого критического предела вверх и вниз повышают потребность в кислороде от 6—11% на каждый градус Цельсия (Sjlvermann c coaвт.). При рождении в зависимости от возраста и массы тела пределы колебаний нейтральной температуры для доношенных детей составляют 29—34 °С, для недоношенных с маленькой массой тела менее 1500 г—33—34 °С (Scopes, Ahmed). Наиболее благоприятным местом для измерения температуры кожи является передняя брюшная стенка. Оптимальной температурой тела для новорожденных считается 36—37°С [Silvermann et al., 1966, a, b]. Эти данные свидетельствуют о настоятельной необходимости лечить заболевшего новорожденного доношенного и недоно­шенного в кувезах. В период новорожденности потребность в кислороде уменьшается при повреждениях мозга (Varga с соавт.).

Повышенное потребление калорий наблюдается при лихорадке (повышение температуры на 1 градус Цельсия влечет за собой повышение основного обмена на 10%) и при значительной физической активности [в норме 15—25 ккал (63— 105 кДж)/кг массы тела за 24 ч, повышение до 40— 50 ккал (167—209 кДж)/кг и в крайних случаях до 80 ккал (335 кДж)/кг массы за 24 ч, Mitchell — Nelson]. Об этом нужно думать, наблюдая у ребенка в послеоперационном периоде беспокойство, синдром недостаточности дыхания и крик. Обмен веществ повышается вдвое также после операций и травматических родов [McCance, Widdowson, 1954] (расщепление белков, жиров и углеводов).

Таблица 36. Концентрация общего белка в плазме [по Acharya, Payne, Mitchell-Nelson, Smidt, 1962; Thalme, 1962; Widdowson, McCance]
Доношенные новорожденные 4,5—4 г/дл (у недоношенных часто еще меньше)
3 мес 5—6 г/дл
1 год 6—7 г/дл
Более старшие дети 6—7,5 г/дл


Наивысшая метаболическая активность наблюдается в возрасте от 6 мес до 2 лет (масса тела 5—15 кг, Holliday, Segar). У новорожденных и детей младшего грудного возраста общее содержание белков в плазме понижено за счет альбумина (Роупег — Wall, Finch; табл. 36).

Предел колебаний очень широк, особенно у новорожденных. При отеках можно думать о содержании общего белка до 4—5 г/дл, а альбумина менее 2,5 г/дл (Mitchel — Nelson). Недоношенные с показателями общего белка менее 4 г/дл имеют мало шансов выжить [Liebe с соавт.].

<< | >>
Источник: Хартиг В.. Современная инфузионная терапия. Парентеральное питание. 1985

Еще по теме Физиологические особенности детского возраста:

  1. АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ДЕТСКОГО ВОЗРАСТА
  2. Физиологические особенности детской кожи
  3. Физиологические особенности детской кожи
  4. Особенности нейрохирургических операций в детском возрасте
  5. Особенности и гигиена органов пищеварения в детском возрасте
  6. ОСОБЕННОСТИ СИСТЕМЫ ИММУНИТЕТА В ДЕТСКОМ ВОЗРАСТЕ
  7. ОСОБЕННОСТИ ВОДНО-ЭЛЕКТРОЛИТНОГО ОБМЕНА В ДЕТСКОМ ВОЗРАСТЕ
  8. Особенности реакции на операционную травму в младенческом и детском возрасте
  9. Анатомо-физиологические особенности органов дыхания детей в возрасте до 7-12 лет.
  10. Иммунитет, его виды. Особенности иммунитета в раннем возрасте. Аллергия и анафилаксия. Меры профилактики инфекционных заболеваний в детских учреждениях.
  11. Периоды детского возраста и их характеристика
  12. ПЕРНИЦИОЗНЫЕ (В12-ФОЛИЕВОДЕФИЦИТНЫЕ) АНЕМИИ ДЕТСКОГО ВОЗРАСТА
  13. ЗАНЯТИЕ 13 ТЕМА. ИНФЕКЦИИ ДЕТСКОГО ВОЗРАСТА
  14. Значение антропометрии в детском возрасте.
  15. Причины проявления агрессии в детском возрасте
  16. Отравления в детском возрасте
  17. К проблеме периодизации психического развития в детском возрасте
  18. Почечная недостаточность в детском возрасте
  19. Ранний врожденный сифилис раннего детского возраста
  20. ПАТОЛОГИЯ МОЛОЧНОЙ ЖЕЛЕЗЫ В ДЕТСКОМ И ЮНОШЕСКОМ ВОЗРАСТЕ